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On the Dynamics of the Ice Sheets 2 

P. HALFAR 

Max-Planck-Institut fiir Meteorolo•lie, Hamburg, Federal Republic of Germany 

The equation which describes the motion of an ice sheet under its own weight has a cylindrically 
symmetric similarity solution. The initial value problem of the equation of motion which has been 
linearized in the deviations from this similarity solution is solved by an expansion of the solution in terms 
of eigcnfunctions of the linearized equation. The linearized equation determines, for all ice sheets of the 
same volume, an asymptotically stable motion. These results are compared with the corresponding results 
of the two-dimensional case (Halfar, 1981). 

Tim SIMILARITY SOLUTION 

This paper is an extension of Halfar's [1981] two- 
dimensional analysis to the three-dimensional case. A homoge- 
neous ice sheet is considered, which is frozen to a flat, horizon- 
tal bed, moves under its own weight according to Glen's flow 
law, and is not governed by other influences. A motion by shear 
strain parallel to the bed is assumed, changes of the shear stress 
in horizontal direction are neglected in comparison with 
changes of the pressure in vertical direction, and changes of the 
vertical velocity in horizontal direction are neglected in com- 
parison with changes of the horizontal velocity in vertical direc- 
tion. 

The position of the ice surface is described by its height h at 
times t above the bed point with Cartesian coordinates x, y and 
cyl!ndrical coordinates p, •p, where h, x, y, p, and t are dimen- 
sionless coordinates with L and T as units of length and time, 
respectively [Halfar, 1981]. The corresponding equation of 
motion [Mahaffy, 1976], 

•h 
- V(Vh IVhl "- • h "+ 2) 

3t 

for the time evolution of the ice surface has a cylindrically 
symmetric (three-dimensional case) similarity solution which is 
compared with the two-dimensional solution [Halfar, 1981]' 

Three-dimensional case 

h = (aV)•/3f2(t)q(rl) 

where 

a • 

rl = pf(tXaV)- •/3 

g(r/) -- (1 -- F] (n+ 1)/n)n/(2n+ 1) 

f(t)=(•) 
I (2n + 1) n •:=(5n+3••,n+l (aV)-n/3 

(n+l) Ff. 7n_2+6n+l ) (2n) 2nn •,(n + 1X2n + i) F-• F- n+ 1 [,2n+ 

Two-dimensional case 

where 

h = (aV)•/ef(t)g(rl) (8) 

rl = xf(tXaV)- •/2 (9) 

g(r/) = (1 - Ir•l ("+ x)/.)./(2.+ x) (10) 

Q•l - 1/(3n + 2) f(t) = (11) 

1 (2n + 1) n z--(3n+2••,n+l (aV)-nn (12) 

(n+l) Ff5•+5n+l) ( n ) F F a- 2n [,(n + 1X2n + i)' -• - n+ 1 [,2n+ 

(13) 

In both cases, V denotes the total volume measured in units of 
L 3 or L •, as appropriate, n the exponent in Glen's flow law, and 

(1) F the F function. 
The time evolution of the maximal height H and the half- 

width R can be obtained from (2) with (3) and (8) with (9), 
respectively' 

Three-dimensional case 

H(t) = h I•=o = (aV)•/3f2(t) (14) 

(2) R(t) = p 17= ! = (aV)•/3f - •(t) (15) 
Two-dimensional case 

(3) H(t) = h In=o = (aV)•/2f(t) (16) 
(4) R(t) = x I,--• = (aV)•/ef - •(t) (17) 
(5) The total volume, 

Three-dimensional case 

(6) H(t)Re(t) 
V - • (18) 

a 

Two-dimensional case 

(7) V - H(t)R(t•) (19) 
a 
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is conserved. 

In both cases, (4) an d (10), the same rescaled surface profile of 
the ice sheet in a plane perpendicular to the bed and to the ice 
edge is obtained. The half-widths, (15) and (17), are power 
functions of the time t with power exponent 1/(5n + 3) and 
1/(3n + 2), respectively. 
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THE PERFECT PLASTICITY LIMIT 

In the following it is shown how Orowan's solution can be 
obtained from the similarity solution in the perfect plasticity 
limit n--} oo. In this limit the ice sheets are described as well in 

the two-dimensional as in the cylindrically symmetric three- 
dimensional case by Orowan's solution [Nye, 1952] which is 
determined by its parabolic surface profile and the relation 
[ Weertrnan, 1964] 

2•oR 
- 1 (20) 

pgjq2 
between its dimensional half-width/• and dimensional maximal 

height lq, where p is the density of the ice, g the acceleration of 
gravity, and the stress To is a parameter in Glen's flow law, 
which occurs in two forms in the literature [Nye, 1957; Weert- 
man, 1964]' 

with 

A"= C- •:o"(22) 

where t• and •: denote the second invariants of the strain rate 

and the deviatoric stress tensor, respectively. 
In the three-dimensional and two-dimensional cases the res- 

caled surface profiles, (4) and (10), respectively, become para- 
bolic in the perfect plasticity limit' 

Three-dimensional case 

goo(r/) = lim g(r/) = (1 - r/) •/2 (23) 

Two-dimensional case 

god(r/) = lim g(7) = (1 - [•[)x/2 (24) 

The second property, (20), is derived in a way which is different 
from that of Ha[ar [1981]. The time which a similarity solution 
of volume V needs to extend from half-width 0 to half-width R 

is given by (cL (5), (6), and (15) or (11), (12), and (17)) 

Three-dimensional case 

I f2n+l•n R sn+3 t= (5n + 3• k n + 1 / (aV) 2n+l (25) 
Two-dimensional case 

1 f2n+l)"R3.2 t= (3n + 2• [ n + 1 (aV) 2"• (26) 
Reintroducing the dimensional time •, half-width •, and height 
a by [cL Ha[ar, 1981] 

[= tT g = RL • = HL (27) 

and using (18), (22), and (25) or (19), (22), and (26), as appropri- 
ate, yields 

Three-dimensional case 

1 (2to •)" (n+2)(2n+})"(28) ;=•Pa • •2(5n+3) 2n+ 
Two-dimensional case 

f=xa •2(3n+2) 2n+ 

as dimensional time which a similarity solution needs to 
extend from a 6 function distribution with half-width 0 to a 

distribution with dimensional half-width /• and dimensional 

maximal height/•. In the three-dimensional case this time is 
smaller than in the two-dimensional case by a factor of 
(3n + 2)/(5n + 3) which is equal to 11/18 in the typical case 

In the limit n--} oo, the shallow profiles, i.e., 2Zo/•/pg/• 2 > 1, 
are never reached by an extending similarity solution as t • do, 
and the steep profiles, i.e., 2Zo/•/p0/• 2 < 1, are reached instan- 
taneously as œ-, 0. Therefore the profiles with (20) are the only 
ones which can exist under these circumstances. 

THE SOLUTION OF THE LINEARIZED RESCALED 

EQUATION OF MOTION 

Applying the time-dependent rescalings which transformed 
the similarity solution of volume V to the time-independent 
solution g(r/), (4) or (10), to the general solution h of (1) yields 
the rescaled general solution G: 

Three-dimensional case 

a(t, rl, ok) = (aV)- •/3f-2(t)h (30) 

Two-dimensional case 

G(t, rl) = (aV)- •/2f- •(t)h (31) 

where a,f(t), and r/are given by (7), (5), and (3) or (13), (11), and 
(9). 

The deviation of the rescaled solution G from the rescaled 

similarity solution g is described by the function e defined 
through 

Three-dimensional case 

r/= (1 + e(t, •, qb))• (32) 

G(t, r/, qb)= (1 + e(t, •, qb))g(•) (33) 

Two-dimensional case [Halfar, 1981] 

r/= (1 + e(t, •))• (34) 

G(t, r/)= (1 + e(t, •))g(•) (35) 

In the three-dimensional case the deviation e is not assumed to 

be cylindrically symmetric and thus depends also on the angu- 
lar variable qb. 

Inserting (3), (30), (32), and (33) or (9), (31), (34), and (35) in the 
equation of motion (1) and expanding up to first order in e 
yields the linearized rescaled equation of motion 

t • = •e (36) 
where c3/c3t denotes differentiation with fixed • and • is a linear 
differential operator in • and & or in • (cL Appendix A or 
Halfar [ 1981 ]). 

In the three-dimensional case as well as in the two-di- 

mensional case the condition 

(•e) < 1 (37) 
guarantees the regularity of the transformations (32) and (33) or 
(34) and (35) (cf. Appendix A or Halfar [1981]) and is equivalent 
to the physical boundary condition of vanishing ice flux q at the 
glacier edge (cf. Appendix C): 

q lea,e = - Vh IVhl n-• h n+ 2 ledge -- 0 (38) 
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HALFAR' ON THE DYNAMICS OF ICE SHEETS 2 6045 

The proof of this equivalence for the two-dimensional case was 
not given by Halfar [1981] but can be carried out in a manner 
similar to that shown in Appendix C. 

The eigenvalues #m,k and normalized eigenfunctions em.k(•, •b) 
or em,•(0 of the operator • in (36) satisfying the boundary 
condition (38) have the mode numbers 

Three-dimensional case 

rn ..... 1, 0, 1 ... k = 0, 1, 2, ... (39) 

Two-dimensional case 

m=0, 1 k=0, 1,2, ... (40) 

where in the two-dimensional case, m = 0 denotes the sym- 
metric case and rn = 1 the antisymmetric case [Halfar, 1981]. 
They are given by 

Three-dimensional case (cf. Appendix B) 

-1 ((1 - n) (n+l)(2n+l)k:•) #m,k '-' (5n + 3) 2 + (n + 1)k + n 

1 (2n + 1) k + ((n - 1) 2 + 4nm2) •/2 (41) -(5n + 3-•• n • 

/•m,t•(•, •) = eim4•ttm,k(Z)fm(z) (42) 

where 

z = •{"+ •/" (43) 

fm(Z)-' 1 (2n + 1) 

I ß exp 2(n + 1) (-n + 1 + ((n - 1) 2 + 4nm2) m) (44) 
Um,•(Z) = hm,•- mG•(Pm, qm, Z) (45) 

n 1 

Pm = (2n + 1'•• + (n + 1)((n- 1): + 4nm:) •/• (46) 
1 

qm = 1 + ((n- 1): + 4nm:) •/• (47) 
(n+ 

+ qm)r( + + -- qm + 
= + + 

Two-dimensional case [Halfar, 1981] 

where 

( m) (n+l){2n+l) k+ 
n(3n + 2) (n + 1) 

rn (n 2 -- n-- 1) '• ß k + (n + 1) + (n + ij('•r• T •)',] (49) 

•m'k(•) •- I-• Um'k(Z)fm(Z) (50) 

z = ICl {"+ (51) 

fm(Z)= 1 (2n + 1) 

ß exp 2(n + 1) (-n + 1 + ((n - 1) 2 + 4nm2) •/2) (52) 
Um,k(Z) •-' hm,t•-1/2Gt•(Pm, qm, Z) (53) 

n 2 -- n- 1 2(2n + 1)m 
Pm = (n + 1X2n + 1) + (n + 1x2n + 1) (54) 

n 2rn 
qm -- -1- • (55) 

(n+l) (n+l) 

k!F(k + qm)F(k + Pm)F(k + Pm -- qm -3- 1) 
hm'n-- (2k + pm)F2(2k + Pm) (56) 

The function Gt•(pm, qm, J) denotes the Jacobi polynomial which 
is proportional to the hypergeometric function F(-k, k + Pm, 
qm; J)' The properties of the special functions in this section are 
described by Abramowitz and Stegun [1970]. 

Expanding • in terms of eigenfunctions (42) or (50), 

Three-dimensional case 

m= +oo 

e(t, •, c/))= • • am,•(t)•m,•(•, (/)) (57) 
m= - • k=O 

Two-dimensional case 

•(t, •)- • • am,•(t)8m,k(• ) (58) 
m=O k=O 

inserting (57) or (58) in (36), and comparing the coefficients of 
every eigenfunction separately yields 

tdm,•(t ) = #m,•am,•(t) (59) 

as differential equation for the time evolution of the amplitude 
am,n(t ) with the solution 

am'k(t) = •,•oo/ am'n(tø) (60) 
The equations (57) or (58) and (60) solve the initial value 
problem for the linearized rescaled equation of motion (36) 
under the boundary condition of vanishing ice flux (38). The 
orthogonality relations for the functions (45) or (53) and the 
inverse relation to (57) or (58) are given in Appendix D. 

For the three-dimensional case the radial dependences in the 
directions •b = 0 (positive abscissa) and •b = n (negative ab- 
scissa) of rescaled surface profiles belonging to some of the 
eigenfunctions •m,n (42) are displayed in Figure 1 for the case 
n - 3. The profiles with rn - 0 and rn - + 1 look very similar to 
the symmetric or antisymmetric profiles in the two-dimensional 
case [Halfar, 1981-1. The profiles with (m, k) = (0, 0), ( + 1, 0), (0, 
1) can be generated from the similarity solution by infinitesimal 
shifts in volume, two orthogonal horizontal directions, and 
time, respectively, and therefore correspond to the profiles (m, 
k) = (0, 0), (1, 0), (0, 1) in the two-dimensional case (cf. dis- 
cussion and Halfar [1981]). 

The singularities of the surface slopes occurring at the center 
of the ice sheet in the cases rn = 1 and rn = 2 or in the case 

rn = 1 (antisymmetric case, cf. Halfar [1981]), which are deter- 
mined by the functions fm(Z) in (44) or (52), are due to the 
nonlinear behavior of the flux q (cf. (38)) in Vh and indeed 
disappear in the case n = 1 when the flux becomes linear in Vh. 
In the three-dimensional case the angular dependence of the 
eigenfunctions (42)is given by e imp'. 

DISCUSSION 

In the three-dimensional case as well as in the two- 

dimensional case, all eigenvalues (41) or (49) except the first, 
#o,o, are negative, and therefore •--} 0 for t--} ov if ao,o = 0 (cf. 
(57) or (58) and (60)), i.e., the similarity solution is asymp- 
totically stable under all perturbations of its initial value data 
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Fig. 1. Each picture shows the radial dependence g(r/) versus r/of the rescaled cylindrically symmetric similarity solution 
(4) which is obtained from the similarity solution (2) by time-dependent rescalings of the distance p from the origin and of the 
height h, such that it becomes time-independent, extends from r/= 0 to r/= 1 in radial direction, and has maximal height 
g(0) = 1. The radial dependence (1 q- C..k•.,k(•, 0))g(O versus (1 q- c.,,k•.,,•(•, 0))• = r/(cf. (32), (33)) in the direction •b = 0 of 
the occuring rescaled surface profiles represent deviations from the similarity solution belonging to eigenfunctions c.,.•.,• (cf. 
(42)) of (36) where m (= M) = 0... q- 3 denotes the angular and k (= K) = 0... 4 the radial mode number. The constants c..• 
have been chosen such that all occuring deviations have the same order of magnitude. The negative part of the abscissa 
corresponds to the direction •b = n. The value n = 3 has been chosen for the exponent in Glen's flow law. 
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which leave the volume invariant. In the two-dimensional case 

the three modes with mode numbers (m, k) = (0, 0), (1, 0), (0, 1) 
can be generated from the similarity solution by shifts in 
volume, space, and time, respectively [Halfar, 1981]. In the 
three-dimensional case, two linearly independent shifts in hori- 
zontal directions are possible, and thus four modes with (m, 
k) = (0, 0), (__+ 1, 0), (0, 1) can be generated by shifts in volume, 
space, and time in the following way. The four parameters of 
the similarity solution are its volume V, the xy coordinates Xo, 
Yo of its center of mass, and the initial time to at which the 
similarity solution is a 6 function distribution in space (do not 
confuse this to with the time to in the solution (60) of the initial 
value problem for the linearized equation). The solution (2) 
belongs to the value x o = Yo = to = 0. Representing the devi- 
ation of the similarity solution which belongs to the parameters 
V + 6V, Xo, Yo, to from the solution (2) by a function e(t, •, •b) 
according to (30), (32), (33) and differentiating this function at 
arbitrary, fixed time with respect to fi V, Xo, Yo, to at fiV = Xo = 
Yo = to = 0 yields four eigenfunctions of (36) which are, up to 
constant factors equal to eo,o(•, •b), the real and imaginary part 
of e•,o(•, •b) = g_ •,o(•, •b) and •o,•(•, •b), respectively. 

The relative decrease -dam,•,/am,•, of the amplitude am,n 
during the time evolution measured in units dR/R which is the 
relative increase of the cap's half-width is given by 

Three-dimensional case (cf. (59), (15), (5)) 

R(t) dam.•(t ) 
am,n(t ) dR(t) 

- -(5n + 3)#m,n (61) 

Two-dimensional case [Halfar, 1981] 

R(t) dam,•(t ) 
am.n(t ) dR(t) 

= - (3n + 2)#m,t• 

The lowest of these values for n = 3 are given by 

(62) 

Three-dimensional case (61) 

CONCLUSION 

The equation (1) describing the motion of an ice sheet under 
its own weight has a cylindrically symmetric similarity solution 
(2) (three-dimensional case) and a similarity solution (8) which 
is homogeneous in one horizontal direction (two-dimensional 
case). Its half-width (15) or (17) is a power function of the time 
where in the three-dimensional case the corresponding power 
exponent is lower than in the two-dimensional case. From both 
solutions the same time-independent surface profile (4) or (10) 
in a plane perpendicular to the bed and to the ice edge can be 
obtained by time-dependent rescalings of the space variables. 
In the perfect plasticity limit the three-dimensional or two- 
dimensional similarity solution yields Orowan's three- 
dimensional or two-dimensional solution, respectively. 

Under the boundary condition of vanishing ice flux (38), the 
initial value problem of the equation of motion (36), which has 
been linearized in the deviations from the similarity solution, 
can be solved by expanding these deviations in terms of eigcn- 
functions of the lincarized equation (57) or (58) and by deter- 
mining the time evolution (60) of the amplitudes which occur as 
coefficients of the eigenfunctions in this expansion. 

The symmetry properties of the eigenfunctions are denoted 
by the integer rn. In the three-dimensional case (rn = 0, ___ 1, ...) 
the eigenfunctions belonging to m are determined by their 
angular dependence proportional to e im* . In the two- 
dimensional case (m = 0, 1), m = 0 denotes the symmetric and 
rn = 1 the antisymmetric eigcnfunctions under x•-x. For 
every m, infinitely many eigenfunctions •m.•(k = 0, 1,...) (42) or 
(50) exist. 

The eigenmodes can be ordered according to the relative rate 
of decrease -dm,•,/am,•, of their amplitudes during the time 
evolution measured in units I(/R which is the relative rate of 
increase of the cap's half-width (cf. (61) or (62)). In the three- 
dimensional as well as in the two-dimensional case, the lowest 
mode with (m, k)= (0, 0) belongs to the value 0 and can be 
generated from the similarity solution by an infinitesimal shift 

T 1 
kO 1 2.6 4.3 6 7.7 9.4 11.2 12.9 14.6 16.3 18.1 

_____1 _____2 __+3 __+4 _____5 +__6 _____7 __+8 _____9 _____10 +___11 

Two-dimensional case (62) [Halfar, 1981] 

T 10 11 k 0 1 

0 1 

m• 

For the modes (m, k) which are generated by shifts in volume 
(m = 0, k = 0) and space (m = +-1 or 1, k = 0) the occurring 
values are equal to 0 and 1 in the three-dimensional as well as 
in the two-dimensional case. The mode (rn, k) = (0, 1) which is 
generated by a shift in time belongs to the value 18 in the 
three-dimensional case and therefore decreases 'more quickly' 
than in the two-dimensional case where this value is equal to 
11. In the three-dimensional case there are, between the modes 
generated by shifts in space and the mode generated by a shift 
in time, still some items with higher angular mode numbers 
rn = +2-.. +10andk = 0. 

in volume. Then follows the value 1, which belongs in the 
three-dimensional case to the two modes with (rn, k) = (__+ 1, 0) 
generated by shifts in two orthogonal horizontal directions and 
in the two-dimensional case to the mode with (rn, k)= (1, 0) 
generated by a shift in x-direction. For n = 3 the next value in 
the two-dimensional case is 11 and the corresponding mode 
with (rn, k)= (0, 1) can be generated by a time shift. In the 
three-dimensional case the mode which is generated by a time 
shift with (rn, k)= (0, 1) belongs to the value 18, and thus the 
corresponding amplitude decreases more quickly than in the 
two-dimensional case. However, in this case there are still the 
modes with (rn, k)= (__+ 2, 0) -" (+__ 10, 0) between the modes 
which are generated by space shifts and the mode which is 
generated by a time shift. 

In the three-dimensional as well as in the two-dimensional 

case it follows from the solution (57) or (58) with (60) of the 
linearized equation (36) under the boundary condition of van- 
ishing ice flux (38) that the similarity solution is asymptotically 
stable with respect to all perturbations of its initial value data 
which leave its volume invariant. 
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APPENDIX A 

Consider the transformation 

t= a qb = Z r/= (1 + e(a, •, Z))• 

with the differential transformation matrix 

=(1 + • (•e))- 

- 1, 
L 0, 0, 1 + •-• (•e) 

(A1) 

(A2) 

The condition 

(½e) < 1 (A3) 
guarantees the regularity of (A2). From (A2) it follows up to 
first order in e: 

0 0 0e 0 
- - • --- (A4) 

a, - _ ½ + 
Inserting (A1), (A4), (AS), (A6), (3), (30), (32), and (33) in (1), one 
obtains the linearized equation of motion in e 

+ 3)o (a(½) - 

- •'(•) OZ: (A7) 
The division by (5n + 3•- •') then yields (36) where 3/3•, 
3/3Z denote 3/3t, •/•, respectively, at fixed •. 

APPENDIX B 

To write (A7) in standard form, the transformations 

z = •(• +n)/n 0 < • < I (A8) 

6 = (g(O - 

n ((2n+l)) .... z (1 - z) -("+ •)/(2.+ •)e (A9) 
(2n + 1) n 

are used. Replacing the operator • 0/0• by the spectral parame- 
ter •; 

a 0--•-• # (A10) 

writing 6 as 

(All) 

026 
_ -m26 

and substituting (A8)-(A11) in (A7) yields 

2n 1 (3n+2) 1 )0A O=A (nT1) z (2n+l)(z-1) •zz 0 =>-Trz= + 

(A12) 

nm 2 1 n(5n + 3) + -(n+l)2z •-(2n+l)(n+l) 

( 2,n+l))(! 1 j))A ,A13) ß #+(5n+3) (z-1 
The condition (A3) is equivalent to 

('n+l) •z)('2n+l) )-x (2n+l) l+•z •-z 

ß (1 - z) (" •)/(2. •)A] < 1 (A14) 
The equation (A13) is Riemann's differential equation. Its com- 
plete set of solutions is denoted by the symbol [Srnirnow, 1970] 

P • fi• y• z (A15) 
•2 •2 Y2 

where •i, •i, Y• (i- 1, 2) are the roots of the corresponding 
fundamental equation at z = O, 1, oc, respectively: 

1 
• (-n + 1 + ((n - 1) 2 + 4rim2) 1/2) (A16) •x,2 = 2(n + 1) 

(n+ 1) 
•1 --' 0 •2 = - • (A17) 

(2n + 1) 

(Sn 2 + 4n + 1) ( (3n 2 - 1) 2 Y•,2 = 2(n + 1)(2n + 1) + 4(n + 1)2(2n + 1) 2 

nm 2 n(5n + 3)# ,•/2 + (n + 1) ------• -(n + 1X2n + 1)/ (A18) 
The set of solutions of (A13)can be represented in the neighbor- 
hood of z = 0 by 

A = ciz:'wi(z) + c2z::w2(z) (A19) 

with arbitrary constants c•, c2 and functions w•(z), w2(z) which 
are analytic in the neighborhood of z = 0 and nonvanishing at 
z=0: 

w•(0) •- 0 w2(0) •- 0 (A20) 

A similar representation exists in the neighborhood of z = 1: 

A = %(1 - z)•'w3(z) + c4(1 - z)•:w4(z) (A21) 

w3(1) •- 0 wall) •- 0 (A22) 

From (A14), (A17), (A21), and (A22) it follows that 

c3 = 0 (A23) 

and from (A16), (A19), and (A20) that 

c2 = 0 (A24) 
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6050 HALFAR: ON THE DYNAMICS OF ICE SHEETS 2 

Thus (1 - z)-thz -• A is analytic in the entire complex z plane. 
The special function of the set [Abrarnowitz and Ste•tun, 1970] 

(A25) 

which is analytic i,n the entire z plane is the hypergeometric 
function F(a, b, c; z) where 

a, b = 71,2 -}- 0•1 -}- •2 C = 1 + 0• -- 0•2 (A26) 

and a or b must be a nonpositive integer -k which implies (cf. 
(A16)-(A18), (A26)) 

b = -k (A27) 

n 1 (n- 1) 2 + 4nm 2 (A28) a = k + (2n + 1'--• + (n + 1) 

c=l+(n+l) (n-1 +4nm 2 (A29) 
Using (A16)-(A18), (A26)-(A29) yield the eigenvalues 

(41). 

APPENDIX C 

In the following it is shown that the condition c3 -- 0 (A23) 
which is equivalent to (37) is also equivalent to (38). Using (3), 
(30) yields for the flux q 

q = __ VhlVhln- •hn+ 2 

(?)( O4•2•(n-1)/2Gn+2 = __fSn+4(ai/)½n+ 2)/3 e•,G,• + %. G, 2 -}- f]2 • 
(A30) 

where (e,, %) is the orthonormal system which belongs to 
cylindrical coordinates. Substituting (33), (A1), (A5), (A6), (A8), 
(A9), and (All) in (A30) and expanding its radial and angular 
part up to first order in 6 yields 

( G•2•(n-1)/2Gn+2 G, G, 2 + r/2 j 
/n+ 1 \n n • 

= -(2n + 1) z/( +n)(1 -- z)n/(2n+ 1) 

6(n+ll)nl ( ; ) zn/(n+ 1) .(2n 1 - 1 
2n + n 

' ((n + 3X2n + l)-(n2 + 5n + 2)z) 
06 n + 

+ •zz 2n + 1 (2n + 1)Z n/(n+l)(1 -- z) (A31) 

ark ( Crp2•(n-1)/20n+ 2 
-- Z- 1/(n+ •)(1 -- Z) (A32) 

2n+ 1 

In the vicinity of the edge z = 1, 6 is given by (cf. (All), (A17), 
and (A21)) 

6 '-- (C3W3(Z) -}- c,w,(z)(1 - Z) -(n+ 1)/(2n+ •))eimZ (A33) 

Substituting (A33) into (A31) and (A32) yields 

( G, 2•(n-1)/2Gn+2 G, G, 2 + f]2 • 
_ _ n + z n/•n+l>(1 - z) n/•2n+ l> 

2n + 

(n + 11)n. +1) )-• + 2n + e,mzzn/•n+ •)((2n -- z 
. -c,w,(z) n 

The angular part (A35) vanishes at the edge z = 1 in any case, 
but the radial part (A34), due to (A22), if and only if c3 = 0. 

APPENDIX D 

Using the orthogonality relations [Abramowitz and Ste•]un, 
1970] 

o•dZ Wm(Z)Um,k(Z)U•,•(Z)= 6•,t (A36) 
for the polynomials um,•(z), (45) or (53) with the weight function 

w•(z) = (1 - 2)Pm-qmz qm- 1 (A37) 

one obtains the inverse relation to (57): 

lfo2'dC)•o • a•,•(t) = • dz e-im't'w•(z) f•- •(z) 

and to (58): 

a,•.•,(t) = •• 
o 

{>o 

ß um,k(z)e(t, •, r)) (A38) 

az w.(z) f.- 

'l(e(t,•)+(-1)•e( t, 2 
(A39) 

Acknowledgments. I thank K. Hasselmann for many discussions. 
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